
AD""A240 541 ITATlON PAGE FormApproved

9 btwdgi evgro or argy oittW mom of th codio ot irtV ao m -,D -~.~ kUOJW 118 for eus tuie N~ b~d to WaiW
He Wkrm., Davei Hrgtway. Sid* 1204. A*on. VA 2202-4M2. g&W to ftg 01111m at Stomte1 id PagWRImrv Afta ies 0"'

Managemengit aWl BMVKgi Wasnctgo. DC 206M3

1 AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I I Final: 04 Jan 1991 to 01 June 1993
4 TITLE AND SUBTITLE 5. FUNDING NUMBERS

Irvine Compiler Corporation, ICC Ada v7.0-0, Sun 3/50, Sun OS V4.0 (Host &
Target), 91051 0W1. 11146

6. AUTHOR(S)

Wright- Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASO/SCEL REPORT NUMBER
Bldg. 676, Rm 135 AVFVSR-466-0891
Wright -Patterson AFB, Dayton, OH 45433

9 SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program OfieREOTNMR
United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

1 2a. DISTRI BUT!ONIAVAI LABILITY STATEM ENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13 ABSTRACT (Maximum 200 words)

Irvine Compiler Corporation, ICC Ada v7.0.0, Wright-Patterson AFB, OH, Sun 3/50, Sun OS V4.0 (Host & Target), ACVC

S1E.1,119. 1

SEP19499191-11063

14. SUBJECT TERMS 15.1' ABEROFPAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16.___PRICE __CODE_

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 1.PIECD

17. SECURITY CLASSIFICATION I18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UIMITATION OF ABSTRACT
OF REPORT I OF ABSTRACT

UNCLASSIFIED IUNCLASSIFED IUNCLASSIFIED
NSN 7540-01 -280-550 Starndard Form 298. (Rev 2 89)

Prescribed by ANSI Sid 239-128

D j 7I4 AI l NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

AVF Control Number: AVF-VSR-466-0891
I August 1991
91-01-04-ICC

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 910510W1.11146
Irvine Compiler Corporation

ICC Ada v7.0.0
Sun 3/50, Sun OS V4.0 => Sun 3/50, Sun OS V4.0

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright Patterson AFB OH 45433-6503

Acce-sionFr

NTIS CriA&I

O)4 t WbtnIo~
Di~

B Y
D4 t/

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 10 May 1991.

Compiler Name and Version: ICC Ada v7.O.0

Host Computer System: Sun 3/50, Sun OS V4.0

Target Computer System: Sun 3/50, Sun OS V..0

Customer Agreement Number: 91-01-04-ICC

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, ValiCation Certificate
910510W1.11146 is awarded to Irvine Compiler Corporation. This certificate
expires on 1 Marci 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

, Ada Va-d16t Organization
Directbr, ' 6om uter & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
'/ Dr. John Solomond, Director

Department of Defense
Washinigton u. 20301

DECLARATION OF CONFORMANCE

Customer: Irvine Compiler Corporation

Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503

ACVC Version: II

Ada Implementation:

Compiler Name and Version: ICC Ada v7.0.O

Host Computer System: Sun 3/50, Sun OS V4.0

Target Computer System: Sun 3/50, Sun OS V4.0

Customer's Declaration

I, the undersigned, representing Irvine Compiler Corporation, declare
that Irvine Compiler Corporation has no knowledge of deliberate devi-

ations from the Ada Language Standard ANSI/MIL-STD-1815A in the

implementation listed in this declaration.

_________________Date:____________

Scott Ogata, Execut/?e Vice-President

Irvine Compiler Corporation

34 Executive Park, Suite 270

Irvine, CA 92714

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT3-1
3.2 SUMMARY OF TEST RESULTS3-1
3.3 TESI' EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM AND LINKER OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any terhnical terms used in this report, the reader is referred to
[Pro9OJ. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG31.

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer & Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compilor Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respecti'vely.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not execu.table. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.

Validated Ada The compiler of a validated Ada implementation.
Compiler

Vdlidated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing oi by registrition [ipro%6i.

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 14 March 1991.

E28005C B28006C C34006D C35702A C35702B C35508I
C35508J C35508M C35508N B41308B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A C46022A
B49008A A74006A C74308A B83022B B83022H B83025B
B83025D C83026A B83026B C83041A B85001L C86001F
C94021A C97116A C98003B BA2011A CB7001A CB7001B
CB7004A CC1223A BC1226A CC1226B BC3009B BDlBO2B
BDlB06A ADlBO8A BD2AO2A CD2A21E CD2A23E CD2A32A
CD2A41A CD2A41E CD2A87A CD2B15C BD3006A BD4008A
CD4022A CD4022D CD4024B CD4024C CD4024& CD4031A
CD4051D CD5111A CD7004C ED7005D CD7005E AD7006A
CD7006E AD7201A AD7201E CD7204B AD7206A BD8OO2A
bDSO04C CD9005A CD9005B CDA2O1E CE21071 CE2117A
CE2117B CE2119B CE2205B CE2405A CE3111C CE3116A
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTA[4 DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDICITS:

C24113L. .Y (14 tests) C35705L..Y (14 tests)
C35706L. .Y (14 tests) C35707L. .Y (14 tests)
C35708L. .Y (14 tests) C35802L. .Z (15 tests)
C45241L. .Y (14 tests) C45321L. .Y (14 tests)
C45421L. .Y (14 tests) C45521L.. (15 tests)
C45524L .Z (15 tests) C45621L. .Z (15 tests)
C45641L. .Y (14 tests) C46012L. .Z (15 tests)

The following 20 tests check for the predefined type LONG INTEGER: for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55BO7A B55BO9C B86001W C86006C CD7101F

C35713B. C45423B, B86001T, and C86006H check for the predefined type
SHORT FLOAT; for this implementation, there is no such type.

C35713C, B86001U, and C86006G check for the predefined type LONG_FLOAT;
for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT. or SHORTFLOAT; for this
implementation, there is no such type.

C45423A, C45523A, and C45622A check that the proper exception is raised
if MACHINE OVERFLOWS is TRUE and the results of various floating-point
operations lie outside the range of the base type; for this
implementation, MACHINEOVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAXMANTISSA is less than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain length clauses
that specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type: this implementation does not support such
sizes.

CDA53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten TYPE'SMALL; this implementation does not
support decimal 'SMALLs. (See section 2.3.)

2-2

IMPLEMENTATION DEPENDENCIES

CD2A84A, CD2A84E. CD2A841..J (2 tests), and CD2A84O use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8OIIA use machine code
insertions; this implementation prnvides no package MACHINE CODE.

AE2101C and EE220ID..E (2 tests) use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by

this compiler.

AE21OIH, EE240ID. and EE24OlG use instantiations of package DIRECTIO
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised

if the given file operations are not supported for the given combination

of mode and access method; this implementation supports these
operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT_10 -
CE2102I CREATE IN FILE DIRECT_10

CE2102J CREATE OUT FILE DIRECT-IO

CE2102N OPEN IN FILE SEQUENTIAL 10

CE21020 RESET IN FILE SEQUENTIAL 10
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE2102Q RESET OUT FILE SEQUENTIAL_10

CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT_10

CE2102T OPEN IN FILE DIRECT-IO

CE2102U RESET IN FILE DIRECT_10
CE2102V OPEN OUT FILE DIRECT_10
CE2102W RESET OUT FILE DIRECT 10

CE3102E CREATE IN FILE TEXT I0

CE3102F RESET Any Mode TEXT 10

CE3102G DELETE TEXT 10

CE3102I CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUTFILE TEXT-10

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot

restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

2-3

IMPLEMENTATION DEPENDENCIES

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise USE ERROR
if they specify an inappropriate value for the external file; there are
no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ER"XOR when the value of the page
number exceeds COUNT'LAST; for this implementation, the value of
COUNT'LAST is greater than 150000, making the checking of this objective

impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 36 tests and 2 support
packages.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B24009A B59001E B59001F B83033B

CD2A53A was graded inapplicable by Evaluation Modification as directed by
the AVO. The test contains a specification of a power-of-lO value as
'SMALL for a fixed-point type. The AVO ruled that, under ACVC 1.11,
support of decimal 'SMALLs may be omitted.

The tests below were graded passed by Test Modification as directed by the
AVO. These tests all use one of the generic support procedures.
LengthCheck or EnumCheck (in support files LENCHECK.ADA & ENUMCHEK.ADA),
which use the generic procedure Unchecked Conversion. This implementation
rejects instantiations of Unchecked Conversion with array types that have
non-static index ranges. The AVO ruled that since this issue was not
addressed by AI-00590, which addresses required support for
Unchecked Conversion, and since AI-00590 is considered not binding under
ACVC 1.11, the support procedures could be modified to remove the use of
Unchecked Conversion. Lines 40..43, 50, and 56..58 in LENCHECK and lines
42, 43, and 58..63 in ENUMCHEK were commented out.

CD1009A CD1O09I CD1009M CDIOO9V CDIOO9W CDlCO3A
CDlCO4D CD2A21A..C CD2A22J CD2A23A..B CD2A24A CD2A31A..C
CD2A81A CD3014C CD3014F CD3015C CD3015E..F CD3O15H
CD3OI5K CD3022A CD4061A

LA3004A and LA3004B were graded passed by Processing and Evaluation
Modification as directed by the AVO. These tests check that when the

bodies of library units (a procedure, function, and package) are made
obsolete, that the implementation will detect the missing bodies at link
time. This implementation will detect the missing bodies at link time.
This implementation detects the missing bodies, but it also issues error

2-4

IMPLEMENTATION DLPENDENCIES

messages that indicate that the main procedures must be re-compiled; this
behavior violates LRM 10.3:6 & 8. To confirm that the implementation does
not in fact require recompilation of the main procedures, the obsolete
bodies were re-compiled (files LA3004A2..4 and LA3004B2..4 were modified to
contain only the bodies) and the tests were then linked and executed-
Report.Result output "NOT APPLICABLE" as expected.

C34009D and C34G.,9J were graded passed by Evaluation Modification as
directed by the AVO. These tests check that 'SIZE for a composite type is
greater than or equal to the sum of its components' 'SIZE values; but this
issue is addressed by AI-00825, which has not been considered; there is not
an obvious interpretation. This implementation represents array components
whose length depends on a discriminant with a default value by implicit
pointers into the heap space; thus, the 'SIZE of such a record type might
be less than the sum of its components 'SIZEs, since the size of the heap
space that is used by the varying-length array components is not counted as
part of the 'SIZE of the record type. These tests were graded passed given
that the Report.Result output was "FAILED" and the only Report.Failed
output was "INCORRECT 'BASE'SIZE", from line 195 of C34009D and line 193 in
C34009J.

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Joe Kohli
Irvine Compiler Corporation
34 Executive Park, Suite 270
Irvine, California 92714

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90.

3-I

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3787
b) Total Number of Withdrawn Tests 93
c) Processed Inapplicable Tests 89
d) Non-Processed 1/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 290

g) Total Number of Tests for ACVC 1.11 4170

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto the host computer using NFS from a remote
host with a directly connected 9-track tape drive. The communication
network was Ethernet.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images resided on the host/target computer
system and were run. The results were captured on the host computer
system.

3-2

PROCESSING INFORMATION

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option I Switch Effect

-stack check Enphle stack overflow checking
-numeric check En.--e arithmetic overflow checks
-elaboration check Enable elaboration checking
-noinfo Suppress informationals
-quiet Suppress compiler banners
-link=<main program> Link the provided subprogram
-listing Generate a compilation listing
-maximum error=O Set maximum number of errors before abort

(A value of zero specifies that there is no
maximum error limit.)

-nopreprocess Disable compilation of preprocessor directives
-nowarnings Suppress warnings

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG891. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXINLEN 254

$BIGIDI (l..V-1 => 'A', V => '1')

$BIGID2 (1..V-1 => 'A', V => '2')

SBIGID3 (I..V/2 => 'A') & '3' &
(1..V-1-V/2 => 'A')

$BIGID4 (I..V/2 => 'A') & '4' &
(l..V-1-V/2 => 'A')

SBIG INT LIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRINGI '"' & (1..V/2 => 'A') & 'll

$BIGSTRING2 '"' & (i..V-l-V/2 => 'A') & '1' & '"'

$BLANKS (1..V-20 => '

$MAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

A-i

MACRO PARAMETERS

$MAXSTRINGLITERAL "'& (1..V-2 => 'A') &'"

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value
--

SACcSIZE 96

$ALIGNMENT 4

SCOUNTLAST 2147483647

$DEFAULTHEMSIZE 4194304

$DEFAULTSTORUNIT 8

SDEFAULT SYSNAME M168000

$DELTADOG 0.000_000_000_465_661_287_307_739_257_812_5

SENTRYADDRESS address-of_entryl

$ENTRY ADDRESS1 address-of~e ntry2

SENTRYADDRESS2 address-of_entry3

$FIELD-LAST 2147483647

$FILETERMINATOR rf

$FIXED-NAME NO SUCH FIXEDTYPE

$FLOATNAME NOSUCHFLOATNAME

SFORMSTRING to

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"

SGREATERTHAN DURATION
524287.5

$GREATER THAN DURATION BASE LAST
- 1oooo500-0

SGREATER-THAN-FLOAT-BASE LAST
1.1T23558209288946943370'/39E+307

SGREATER THANFLOAT SAFE LARGE
1.123558209288946943370739E+307

A-2

MACRO PARAMETERS

$GREATERTHANSHORT FLOAT SAFELARGE
1.OE308

$fiIGH PRIORITY 255

S ILLEGAL-EXTERN~AL-FILE NAME 1

7NODIRECTORY/FILENAME

$ILLEGALEXTERNALFILE NAME2
/NODIRECTORY/THI S-FILE-NAME-IS-ILLEGAL

$INAPPROPRIATE LINELENGTH
-1

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDEPRAGMAl PRAGMA INCLUDE ("a28006d1.tst")

SINCLUDEPRAGMA2 PRAGMA INCLUDE ("b28006fl.tst")

SINTEGERFIRST -2147483648

SINTEGER-LAST 2147483647

SINTEGERLASTPLUS_1 2147483648

SINTERFACELANGUAGE C

SLESSTHANDURATION -524287.5

SLESS THAN DURATION BASE FIRST
-- 10000000.0

SLINETERMINATOR ASCII.LF

$LOWPRIORITY 0

$MACHINECODESTATEMENT

NULL;

$MACHINE CODE TYPE NO SUCH TYPE

SMANTISSADOC 31

SMAXDIGITS 15

SMAXINT 2147483647

SMAX INT PLUS 1 2147483648

SMIN INT -21474&P'648

A-3

MACRO PARAMETERS

$NAME TINY-INTEGER

$NAMELIST M68000

SNAMESPECIFICATIONi ./X2120A

$NAME SPECIFICATION2 ./X21O2B

$NAMESPECIFICATION3 ./X3119A

SNEGBASEDTNT 16#FFFFFFFE#

$NEWMEMSIZE 4194304

$NEW STOR UNIT 8

SNEWSYSNAME M68000

SPAGETERMINATOR ASCII.FF

$RECORD-DEFINITION NEW INTEGER;

$RECORDNAME NOSUCHMACHINE CODE TYPE

$TASKSIZE 32

$TASKSTORAGESIZE 16383

$TICK (1.0/60.0)

SVARIABLEADDRESS address-of-varl

$VARIABLE ADDRESS1 address of var2

$VARIABLEADDRESS2 address-of-var3

$YOUR PRAGMA EXPORTOBJECT

A-4

APPENDIX B

COMPILATION SYSTEM AND LINKER OPTIONS

The compiler and linker options of this Ada implementation, as described in
this Appendix, ar- prcvided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler and linker
documentation and not to this report.

B-i

Apr 7 22:37 1991 sur50.doc/ccapie and link_options.all Page 1

Passive ICC Qutifiers
-argummnts -arga Display all arguments to the ICC commirnd
-display DispLay all actions as they are performed
-help List coonly used qualifiers
-helpall -all List all available qualifiers
-hide Suppress naming ICC subprocesses (VMS only)
-ignore cfg -icfg Ignore configuration file qualifiers
-ignore-nv -ienv Ignore envirarment variable qualifiers
-normal- Compile with Inormat' messages
-quiet Compi le quietly
-save pas2 Save all intermediate files
-save temps -save Save temporary files generated by pas2
-succeed Always return the success status
-symbots -symS Show current value of ICC command's symbols
-tmp Use temporary directory for intermediate files
-tmp-<arg) Use arg> as the temporary directory
-unique Use unique file names for intermediate files
-verbose Compile with verbose messages

Active ICC Qualifiers
-ass Stop at the generated assembly file
-as* flag -asmfz-arg> Explicitly add flag(s) for the assembler
-asm name -aa arg> Use <arg> as the assembler
-c Stop at the generated C source file
-cc ftag -ccf=<arg> Explicitly add flag(s) for the C compiler
-cc name -ccn<arg> Use <arg> as the C compiler
-co~timize Invoke the C optimizer
-exe Link a non-Ada program
-execute Execute and delete executable after linking
-execute flag -execf=<arg> Explicitly add flag(s) for the executable
-ada extz<arg> Set Ada file extension
-asm-extz-arg> Set assembly file extension
-c extz'arg> Set C file extension
-exe ext=<arg> Set executable file extension
-int extu-arg> Set IFORM file extension
-Libext=<arg> Set object archive/library file extension
-mr9_ext=<arg> Set list merge file extension
-obj-ext=<arg> Set object file extension
-opt_extsarg> Set optimized IFORM file extension
-pasext=<arg> Set Pascal file extension
-ant Stop at the generated iform file
-keep temps-carg> Save file(s) with extension(s) in <arg>
-Library -Lib=<arg> Set the compilation Library directory
-loader nam -loader=<arg> Use <arg> as the loader
- toader:pref lag -loaprefza<rg>

Explicitly add pre-flag(s) for loader
-Loaderpostflag -loadpstf=<arg>

Explicitly add post-flag(s) for Loader
-m,<ar9> Generate a Link map file (ICC linker only)
-merge Invoke the ICC list merger
-MrV Stop at the generated list merge file
:obj a Stop at the generated object file (default]
-oitibw<arg> Install the object file in Library <erg>
-objLib flag -objLibf=<rg> Explicitly add flog(s) for object librarian
-objlibname -objtibn=<arg> Use arg> as the object librarian
-ont Stop at the optimizer iform file
-optimize -opt Invoke the Ads optimizer
-pretoaerzAarg> Execute <arg> before Linking
-preLoader ftag -preloadfz<argp

Explicitly add ftag(s) for pretoader
-posttoader=<srg> Execute <arg> after Linking
-postitoaler_f tog -psit osdf=zarg>Explicitly add flag(s) for posttoader

-rantib name -rantibnrwarg> Use <arg> as the rantib Library processor
-releasia'carg> Set the release directory
-show only Display all actions to be performed
-systiw-<arg> Set the system library directory
-tootlversionarg Specify the ICC toolset version

Ada Quatlifairs
-information Enable informtional warnings (defautt]
-checks Enable all runtime checks (default]
-conetible colts Generste calls compatible with C calls
-cross refeFence -xref Generat cross-reference file (.xrf)
-decLaFecrg; Declare an identifier
-debugger Compile for the Ada symbolic debugger
-etaboration check -etab check

Generate ELABORATION checking
-exception info Enable extra EXCEPTION information (default]
-informati&n Enable informtionat warnings (default]
-listing Generate list file (.1st)
-maxisuerrorsw~arg) Set mexiium numier of errors reported
-preprocess Generate commented preprocess file (-app)
-rate Rate code efficiency
-stack check Generate stack checking code
-syntaionty Syntax check only
-trim Generate trimmed preprocess file (.app)
-warnings -w Enable warnings
-wrap Enable auto-wrapping error messages (defauLt]
-zero Zero all records (default]

Apr 7 22:37 1991 sun350.dc/comPile and tinkoptions.mLt Page 2

ICC Code Generator Qualifiers
-branch relative Use reLative branches (BSO only)
-coat Tn code Place constant aggregates in CODE segment
-hostb ui:Zer -cbx -cdb -xdbGenerate host debugger information
-extel tisting -ext Generate extended code Listing output
-fpa Generate intine hardware FPA code (HPUX only)
-Leaf rocedures Generate LEAF procs when possible (i80960 only)
-gpro~lie Generate runtime Igprof' profiting
-doc info Generate extended local information
-fpu--eb8881 -08882 Generate inline hardwsre floating-point code
-frame size Generate frame size for each sut:p (i80960 only)
-names Generate namelist file (.n)
-numeric check -rumchk Generate overflow detection code
-probe sTack Generate stack probes
-profiTe Generate runtime profiting
-real Use real nes
-static Static mode (C code generator only)

ICC Pretinker Qualifiers
-coplink -cluarg> Ada conpiLe and Link <erg> into one file
-force Link Force link, even if dependency errors
-heap izesarg> Allocate <arg> bytes of heap (i80960 only)
-ti nk-l=larg> Ada Link coapilation unait <erg>
-output -o<arg> Use <erg> as the executable file name
-stock-size -stackz<arg> Allocate arg> bytes of user stack (i80960 onLy)

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. implementation-specific portions of the package STANDARD, which
are not a part or Appendix F, are:

package STANDARD is
,........

type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 15
range -1.12355820928895E+307 .. -1.12355820928895E+307;

type DURATION is delta 2.0**(-12)
range -524287.0 .. 524287.0;

type SHORT INTEGER is range -32768 .. 32767;

type TINYINTEGER is range -128 ..127;

..........

end STANDARD;

C-1

Appendix F
ICC Ada Version 7.0

Sun 3/50
SunOS, Release 4.0

Irvine Compiler Corporation
34 Executive Park, Suite 270

Irvine, CA 92714
(714) 250-1366

April 23, 1991

1 ICC Ada Implementation

The Ada language definition leaves implementation of certain features to
the language implementor. This appendix describes the implementation-
dependent characteristics of ICC Ada.

2 Pragmas

The following predefined pragmas are implemented in ICC Ada as described
by the Ada Reference Manual:

Elaborate This pragma allows the user to modify the elaboration order of
compilation units.

Inline Subprogram inlining is implemented. Inline substitutions are per-
formed by the ICC optimizer. This pragmais not supported for generic
subprograms or subprograms which contain nested subprograms.

List This pragma enables or disables writing to the output list file.

Pack Packing on arrays and records is implemented to the bit level. Slices
of packed arrays are not implemented, except boolean arrays.

1

2

Page This pragma ejects a new page in the output list file (if enabled).

Priority This pragma sets the priority of a task or main program. The
range of the subtype priority is 0..255.

The following predefined pragmas have been extended by ICC:

Interface This pragma is allowed to designate variables in additiun to sub-
programs. It is also allowed to have an optional third parameter which
is a string designating the name for the linker to use to reference the
variable or subprogram. The third parameter has the same effect as
pragma Interface- name.

Suppress In addition to suppressing the standard checks, ICC also permits
suppressing the following:

Exception, info Suppressing Exception- info improves run-time per-
formance by reducing the amount of information maintained for
messages that appear when exceptions are propagated out of the
main program or any task.

All-checks Suppressing All-checks suppresses all the standard
checks as well as Exception- info.

The following predefined pragmas are currently not implemented by ICC:

Controlled Memory-size Optimize
Shared Storage- unit System. name

The following additional pragmas have been defined by ICC: (For further
details on these pragmas refer to the ICC Ada Ustr's Reference Guide.)

Compress This pragma reduces the storage required for discrete subtypes
in structures (arrays and records). Its single argument is the name
of a discrete subtype. It specifies that the subtype should be repre-
sented as compactly as possible (regardless of the representation of the
subtype's base type) when the subtype is used in a structured type.
The storage requirement for variables and parameters is not affected.
Pragma Compress must appear prior to any reference to the named
subtype.

3

Export This pragma is a complement to the predefined pragma Inter-
face. It enables subprograms written in Ada to be called from other
languages. It takes 2 or 3 arguments. The first is the language to be
called from, the second is the subprogram name, and the third is an
optional string designating the actual subprogram name to be used
by the linker. Pragma Export must appear prior to the body of the
designated subprogram.

ExternaL name This pragma is equivalent to the ICC pragma Export
with an implicit language type of "Ada" and a required external name.
This pragma allows the user to specify the exact name of the subpro-
gram that will be used in the generated object file. This pragma is
provided for compatibility with existing Ada source files.

Foreign This pragma is used to add an object file or an object library file
to the link command line used when linking the current compilation
unit. Pragma Foreign is most frequently used in conjunction with
pragma Interface so that foreign object files may be automatically
included when the Ada compilation unit is linked. This pragma ac-
cepts two parameters. The first parameter indicates the location of
the foreign object name on the link command line. It must be either
Normal or Post. The second parameter is a string denoting the foreign
object. This string is passed unmodified to the linker, so it should be
a complete filename. If the location is Normal, then the foreign object
is included immediately after the current Ada compilation unit on the
link command line. If the location is Post, then the foreign object
name is included at the end of the link command line. When multiple
Foreign Post pragmas are used in a single program, the order of the
foreign objects on the link command line is not defined.

Interface-Name This pragma takes a variable or subprogram name and
a string to be used by the linker to reference the variable or subpro-
gram. It has the same effect as the optional third parameter to pragma
Interface.

No- zero The single parameter to No-.zero is the name of a record type.
If the named record type has holes (or gaps) between fields that are
normally initialized with zeroes, this pragma will suppress the clearing
of the holes. If the named record type has no holes this pragma has
no effect. When zeroing is disabled, comparisons (equality and non-

4

equality) of the named type are disallowed. The use of this pragma
can significantly reduce initialization time for record objects. The
ICC Command Interpreter also has the qualifier NO-..ZERO which has
the effect of implicitly applying pragma No.zero to all record types
declared in the file.

Put, Put-line These pragmas take any number of arguments and write
their value to standard output at compile time when encountered
by the compiler. The arguments may be expressions of any string,
enumeration, or integer type, whose value is known at compile time.
Pragma Put- line adds a carriage return after printing all of its argu-
ments. These pragmas are often useful in conjunction with conditional
compilation. They may appear anywhere a pragma is allowed.

Static- elaboration This pragma is used immediately within a package
specification to state that all elaboration for the package is intended
to be static. A warning will be generated for all objects within the
package specification or corresponding body which require dynamic
elaboration.

Unsigned. Literal This , -gma, when applied to a 32-bit signed integer
type, affects the inte.pretation of literals for the type. Literals be-
tween 2**31 and 2**32 are accepted for the type and are represented
as if the type were unsigned. Operations on the type are unaffected.
Note that (with checking suppressed), signed addition, subtraction,
and multiplication are equivalent to the corresponding unsigned op-
erations. However, division and relational operators are different and
should be used with caution. This pragma is used for type Address
in package System.

Uselib This pragma is used within a context clause to explicitly add a list
of named searched libraries to the library search list of the current
compilation. The specified libraries are searched first in all following
WITH clauses.

3 Preprocessor Directives

ICC Ada incorporates an integrated preprocessor whose directives begin
with the keyword Pragma. They are as follows:

5

Abort This pragma causes the current compilation to be immediately
halted. It is useful when unexpected circumstances arise inside condi-
tionally compiled code.

If, Elsif, Else, End These preprocessor directives provide a conditional
compilation mechanism. The directives If and Elsif take a boolean
static expression as their single argument. If the expression evaluates
to False then all text up to the next End, Elsif or Else directive is
ignored. Otherwise, the text is compiled normally. The usage of these
directives is identical to that of the similar Ada constructs. These di-
rectives may appear anywhere pragmas are allowed and can be nested
to any depth.

Include This preprocessor directive provides a compile-time source file in-
clusion mechanism. It is integrated with the library management sys-
tem, and the automatic recompilation facilities.

The results of the preprocessor pass, with the preprocessor directives
deleted and the appropriate source code included, may be output to a file at
compile-time. The preprocessor may be disabled by using the NOPREPROCESS
command-line qualifier, in which case the above directives are ignored.

4 Attributes

ICC Ada implements all of the predefined attributes, including the Repre-
sentation Attributes described in section 13.7 of the Ada RM.
Limitations of the predefined attributes are:

Address This attribute cannot be used with a statement label or a task
entry.

The implementation defined attributes for ICC Ada are:

Version, System, Target, CG_ mode These attributes are used by ICC
for conditional compilation. The prefix must be a discrete type. The
values returned vary depending on the target architecture and oper-
ating system.

6

5 Input/Output Facilities

5.1

The implementation dependent specifications from TEXT.IO and DI-
RECTIO are:

type COUNT is range 0 .. IITEGER'LAST;
subtype FIELD is INTEGER range 0 .. IRTEGER'LAST;

5.2 FORM Parameter

ICC Ada implements the FORM parameter to the procedures OPEN and
CREATE in DIRECTIO, SEQUENTIALIO, and TEXT-1O to perform
a variety of ancillary functions. The FORM parameter is a string literal
containing parameters in the style of named parameter notation. In general
the FORM parameter has the following format:

"fieldi => value1 [, field4 => value,]"

where field, => valuej can be

OPTION => NORMAL

OPTION => APPEND
PAGE-MARKERS => TRUE
PAGE-MARKERS => FALSE
READ-INCOMPLETE => TRUE
READ-INCOMPLETE => FALSE
MASK => <9 character protection mask>

Each field is separated from its value with a "=>" and each field/value
pair is separated by a comma. Spaces may be added anywhere between
tokens and upper-case/lower-case is insignificant. For example:

create(f, out_file, "list.data",
"option => append, PAGE_.ARKERS => FALSE, Mask f> rvxrvx---);

The interpretation of the fields and their values is presented below.

OPTION Files may be opened for appendage. This causes data to be
appended directly onto the end of an existing file. The default is

7

NORMAL which overwrites existing data. This field applies to OPEN in
all three standard I/O packages. It has no effect if applied to procedure
CREATE.

PAGE-.MARKERS If FALSE then all TEXT IO routines dealing with page
terminators are disabled. They can be called, however they will not
have any effect. In addition the page terminator character (-L) is al-
lowed to be read with GET and GET-LIKE. The default is TRUE which
leaves page terminators active. Disabling page terminators is particu-
larly useful when using TEXTI0 with an interactive device. For out-
put files, disabling page terminators will suppress the page terminator
"haracter that is normally written at the end of the file.

READ-INCOMPLETE This field applies only to DIRECT- 10 and SEQUENTIAL-_I0
and dictates what will be done with reads of incomplete records. Nor-
mally, if a READ is attempted and there is not enough data in the file
for a complete record, then END-ERROR or DATA-ERROR will be raised.
By setting READ_ INCOMPLETE to TRUE, an incomplete record will be
read successfully and the remaining bytes in the record will be ze-
roed. Attempting a read after the last incomplete record will raise
END-ERROR. The SIZE function will reflect the fact that there is one
more record when the last record is incomplete and READ- INCOMPLETE
is TRUE.

MASK Set a protection mask to control access to a file. The mask is a
standard nine character string notation used by Unix. The letters
cannot be rearranged or deleted so that the string is always exactly
nine characters long. This applies to CREATE in all three standard
I/O packages. The default is determined at runtime by the user's
environment settings.

The letters in the Mask are used to define the Read, Write and
eXecute permissions for the User, Group and World respectively. Wher-
ever the appropriate letter exists, the corresponding privilege is granted.
If a "-" is used instead, then that privilege is denied. For example if
Mask were set to "rv-rv-.... then read and write privilege is granted
to the file owner and his/her group, but no world rights are given.

If a syntax error is encountered within the FORM parameter then the
exception USE-ERROR is raised at the OPEN or CREATE call. Also, the stan-

8

dard function TEXT IO. FORM returns the current setting of the form fields,
including default values, as a single string.

6 Package SYSTEM

Package SYSTEM is defined as:

package SYSTEM is

type NAME is (M68000);

-- Language Defined Constants

SYSTEMLAME constant NAME := M68000;
STORAGEUIIT : constant := 8;
MEMORY-SIZE constant 4*(2**20);
MINIT : constant -2,,31;
MAXINT : constant : 2**31-1;
MAX-DIGITS constant 15;
MAI-MANTISSA constant 31;
FIXEDELTA constant : 2.0**(-31);
TICK constant 1.0/60.0;

type ADDRESS is range MININT .. MAXIKT; -- Signed 32 bit range.

subtype PRIORITY is INTEGER range 0 .. 255; -- 0 is default priority.

-- Constants for the STIHEAP package

BITSPERBMU constant 8; -- Bits per basic machine unit.
MAXALIGNENT : constant 4; -- Maxium alignment required.
MINMEMBLOCK constant := 1024; -- Minimum chunk request size

-- Constants for the HOST package

HOSTCLOCRESOLUTION constant 1; -- 1 microsecond.
BASEDATECORRECTIO : constant : 25_202; -- Unix base date is 1/1/1970.

pragma UNSIGIEDLITERAL (ADDRESS); -- Allow unsigned literals.

ULL-k.DDRESS : constant ADDRESS := 0; -- Value of type ADDRESS
-- equal to NULL.

pragma PUT-LINE ("Target: ", SYSTEMNAME);

9

end SYSTFM;

7 Limits

Most data structures held within the ICC Ada compiler are dynamically
alloca.ted, and hence have no inherent limit (other than available memory).
Some limitations are:

The maximum input line length is 254 characters.

The maximum number of tasks abortable by a single abort statement is

64.

Include files can be nested to a depth of 3.

The number of packages, subprograms, tasks, variables, aggregates, types
or labels which can appear in a compilation unit is unlimited.

The number of compilation units which can appear in one file is unlimited.

The number of statements per subprogram or block is unlimited.

Packages, tasks, subprograms and blocks can be nested to any depth.

There is no maximum number of compilation units per library, nor any

maximum number of libraries per library system.

8 Numeric Types

ICC Ada supports three predefined integer types:

TINY-INTEGER -128..127 8 bits
SHORT-INTEGER -32768..32767 16 bits
INTEGER -2147483648..2147483647 32 bits

In addition, unsigned 8-bit, 16-bit and 32-bit integer types can be defined
by the user via the SIZE length clause. Storage requirements for types can
be reduced by using pragma Pack and record representation clauses and for
subtypes by using the ICC pragma Compress.

Type float is available.

10

Attribute FLOAT value
size 64 bits
digits 15
first - 1.12355820928895E + 307
last +1.123'55820928895E + 307

Fixed point types automatically assume the smallest storage size necessary
to represent all of the model numbers with the indicated delta and range.
The size of _ fixed point type may be changed via the SMALL representation
clause and the SIZE length clause. Unsigned fixed point types may be
defined using the SIZE length clause.

ICC Ada rounds real (fixed and floating point) values away from zero at
the mid-point between integral values (i.e. 1.5 rounds to 2.0 and -3.5 rounds
to -4.0).

9 Tasks

The type DURAT!ON is defined with the following characteristics:

Attribute DURATION value
delta 2.44140625E - 04 sec

small 2.44140625E - 04 sec

first -524287.0 sec
last 524287.0 sec

The subtype SYSTEM.PRIORITY as defined provides the following range:

Attribute PRIORITY value
first 0
last 255

Higher numbers correspond to higher priorities. If no priority is specified
for a task, PRIORITY'FIRST is assigned during task creation.

10 Representation Clauses

10.1 Type Representation Clauses

10.1.1 Length Clauses

The amount of storage to be associated with an entity is specified by means
of a length clause. The following is a list of length clauses and their imple-

11

mentation status:

" The SIZE length clause is implemented. When applied to integer range
types this length clause can be used to reduce storage requirements
including storage as unsigned values. It may be used to declare an
unsigned 32-bit type. Length clauses are allowed for float and fixed
point types, however the storage requirements for these types cannot
be reduced below the smallest applicable predefined type available.

" The STORAGE-SIZE length clause for task types is implemented.
The size specified is used to allocate both the task's Task Information
Block (TIB) and its stack.

" The STORAGE-SIZE length clause for access types is implemented.
When a length clause is encountered for an access type, a block of
memory is reserved in the user's heap space. This block of memory
cannot be expanded beyond the bounds specified in the length clause.
When the memory in this block is exhausted, STORAGEERROR is raised.
Due to heap management overhead, the full amou-t of memory indi-
cated in the length clause may not be available for allocation.

" The SMALL length clause for fixed point types is implemented for
powers of two. ICC Ada does not support SMALL values that are not
integral powers of two.

10.1.2 Enumeration Representation Clauses

Enumeration representation clauses are implemented. The use of enumera-
tion representation clauses can greatly increase the overhead associated with
their reference. In particular, FOR loops on such enumerations are very ex-
pensive. Representation clauses which define the default representation (i.e.
The first element is ordinal 0, the second 1, the third 2, etc.) are detected
and cause no additional overhead.

10.1.3 Record Representation Clauses

Record representation clauses are implemented to the bit-level. Records con-
taining discriminants and dynamic arrays may not be organized as expected
because of unexpected changes of representation. There are no implemen-
tation generated names that can be used in record representation clauses.

12

Record representation clauses allow more precise packing than pragma
Pack. Record representation clauses allow the user to specify the exact
location of fields within a record to the bit-level. The ICC Ada compiler
implements bit-level record representation clauses including nested records
starting on bit-boundaries. Since the user specifies the exact bit location,
overhead for extracts and stores may be very high, so record representation
clauses should be applied very carefully. Record representation clauses are
implemented using the following rules:

a Fields of records may be allocated to the nearest bit for elements which
are smaller than 32-bits. This includes small nested records. Elements
32-bits or larger (and all arrays) must be placed on byte boundaries.

e If the specified storage space for an element is not adequate using its
default allocation, it will automatically be packed in two stages: (1)
Normal packing will be attempted using the default alignment rules. If
this does not adequately reduce storage then (2) bit-level packing will
be attempted with all fields aligned on 8-bit or smaller boundaries. If
this bit-level packing still does not meet the storage requirement, an
error message will be generated.

* The optional alignment clause may be used to specify an alignment
up to 8 bytes.

* All fields of a record representation clause which are left unspecified
will be allocated at the end of the record using the default alignment

rules for each element.

e The fields of a record representation clause may be specified in any
order and the storage order of the fields does not need to be the same
as the order in which they were declared.

* If no alignment clause is specified, the alignment requirement for the
record is equivalent to the largest alignment requirement of its ele-
ments.

10.2 Address Clauses

Address clauses are implemented for variables. Address clauses for local
variables using dynamic values are implemented. The use of a dynamic ad-
dress can facilitate overlaying since the address specified may be the value of

13

a variable of type System. Address or may be the result of an expression us-
ing the predefined Address attribute. Address clauses are not implemented
for subprograms, packages, tasks, constant objects, or statement labels.

11 Interface to Other Languages

Pragma Interface allows Ada programs to interface with (i.e., call) subpro-
grams written in another language (e.g., assembly, C), and pragma Export
allows programs written in another language to interface with programs writ-
ten in Ada. The accepted languages are: Intrinsic, Ada, C and Assembly.
The aliases Assembler and ASH can also be used instead of Assembly. The
language Intrinsic should be used with care-it is used by ICC for inter-
nally handled operators.

12 Unchecked Type Conversion

The generic function Unchecked- conversion is implemented. In general,
unchecked-conversion can be used when the underlying representations of
values are similar.
Acceptable conversions are:

* Conversion of scalars. Unchecked- conversion can be used to change
the type of scalar values without restriction. In most circumstances
the unchecked conversion producet x, ad.:X',.al ,.,

* Conversion of static constrained structures. Constrained static arrays
and records are represented as contiguous areas of memory, and hence
can be converted using unchecked -conversion.

* Conversion of scalars to static constrained structures. Scalar objects
may be converted to static constrained structures with no additional
overhead. If a scalar value is converted to a structure, an aggregate
is first built to hold the scalar value and its address is used as the
address of the resulting structure.

Because the representation of dynamic structures uses implicit pointers and
dope-vectors, ICC Ada does not allow unchecked conversions to or from
dynamic or unconstrained structures (arrays or records). A compile-time
error message will be generated for such instantiations.

14

Although the Ada compiler does not produce errors for the following
unchecked conversions, they should be avoided since their results are not
obvious:

* Conversion from constrained discriminant records. Conversion from
discriminant records can cause unpredictable behavior because of un-
derlying representation changes. The unchecked-conversion will use
the same rules as described above for performing the copy, however
the results of this operation may not be what the user desires, since
ICC Ada does not place arrays constrained by the discriminant in-line
with the other fields in a discriminant record. In place of the array
only a pointer is used and the array is allocated dynamically from the
internally maintained heap.

* Conversion to or from pointers to unconstrained arrays. Unconstrained
array pointers are implemented as special dope-vectors in ICC Ada.
Conversions to or from these dope-vectors are not recommended.

e Conversion to or from any type or object declared in a generic. Gener-
ics can cause hidden representation changes. Unchecked-conversions
of any object or type declared in a generic should be avoided.

ICC Ada does not require that the sizes of the parameters to an
unchecked-.conversion be identical. The size of the target type is used to
determine the number of bytes to copy. The size of the target type (in
bytes) is determined by the Ada front end and exactly that many bytes are
copied from the source address to the target address. This can cause prob-
lems (e.g. memory faults) when the source object is smaller than the target
object. For example, using unchecked- conversion to convert a character into
an integer will cause 4 bytes to be copied starting from the address of the
character. The first byte copied will be the value of the character, but the
values of tre remaining three bytes cannot be predicted since they depend
on values of variables or fields immediately after the character in memory.
If the source object is larger than the target object then only the bytes that
will fit in the target object are copied from the source starting at the address
of the first byte of the source.

13 Unchecked Storage Deallocation

Unchecked- deallocation is implemented. Unchecked- deallocation of

15

structures containing dynamic elements (such as discrirninant records with
dynamic arrays) should not be performed since these nested structures are
not automatically deallocated.

14 Main Programs

Main programs may be procedures or functions and may have any number
of parameters. Parameter and function return types can be either discrete
types (including enumerations) or unconstrained arrays. Paxameters may
also include default values. If the main program is a function, then upon
exit the returned value will be printed on the user's screen. If the program
is invoked with the wrong number of parameters a usage error message is
printed and execution is aborted. If an illegal value is passed to a parameter
then CONSTRAINT-_ERROR is raised.

